Website is intended for physicians
Search:
Всего найдено: 7
authors: 

 

Abstract:

Introduction: research is dedicated to use of intracerebral laser photobiomodulation therapy (PBMT) in treatment of ischemic stroke after-effects in comparison with conservative therapy methods.

Aim: was to evaluate effectiveness of intracerebral transcatheter laser PBMT in patients with previous ischemic stroke.

Materials and methods: 836 patients were included in study, within the period from 6 months to 6 years after ischemic strokes of various severity, aged 29-81 (mean age 74,9): 593 men (70,93%), 243 women (29,07%). Test Group - 511 (61,12%) patients with distal lesions of intracerebral arteries who underwent transcatheter intracerebral laser PBMT; control Group - 325 (38,88%) patients with similar distal lesions of intracerebral arteries who received conservative treatment.

Results: Test Group: good clinical results were obtained in 259 (87,21%) cases after small focal strokes; in 94 (60,26%) after midfocal strokes; in 12 (20,69%) after macrofocal strokes. Satisfactory clinical results were obtained in 33 (11.11%) cases after small focal strokes; 39 (25,00%) after midfocal strokes; 22 (37,93%) after macrofocal strokes.

Control Group: 51 (21,07%) patients after small focal strokes showed good clinical results; patients after midfocal strokes and macrofocal strokes did not have good results; 60 (24,79%) patients after small focal strokes and 8 (19,05%) patients after midfocal strokes showed satisfactory clinical results; patients after macrofocal strokes did not have satisfactory results.

Conclusions: transcatheter intracerebral laser photobiomodulation therapy is an effective, pathogenetically substantiated method of treatment in patients with ischemic stroke after-effects, leading to restoration of activities of daily living, of cognitive and mental functions and returning patients to fully active life.

 

References

1.     Ahmad FB, Anderson RA. The Leading Causes of Death in the US for 2020. JAMA. 2021.

2.     Maksimovich IV. Transcatheter Treatment of Atherosclerotic Lesions of the Brain Complicated by Vascular Dementia. Diagnostic and Interventional Radiology. 2013; 7(2): 65-75 [In Russ].

3.     Maksimovich IV. Transcatheter intracerebral photobiomodulation in ischemic brain disorders: clinical studies (Part 2). Photobiomodulation in the Brain. 2019; 529-544.

4.     Caplan LR. The Effect of Small Artery Disease on the Occurrence and Management of Large Artery Disease. JAMA Neurol. 2016; 73(1): 19-20.

5.     Zhulev NM, Pustozertsev VG, Zhulev SN. Cerebrovascular Diseases. 2002; Moscow, BINOM [In Russ].

6.     Maksimovich IV. Application of transcatheter laser technologies in treatment of atherosclerotic lesions of the brain. Diagnostic and Interventional Radiology. 2016; 10(3): 57-67 [In Russ].

7.     Hamblin MR. Photobiomodulation for Traumatic Brain Injury and Stroke. J Neurosci Res. 2018; 96(4): 731-743.

8.     Maksimovich IV. Results of brain transcatheter laser revascularization in the treatment of the consequences of ischemic stroke. J Vas Dis Treat. 2017; 1(1): 2-5.

9.     Pasi M, Cordonnier Ch. Clinical Relevance of Cerebral Small Vessel Diseases. Stroke. 2020; 51(1): 47-53.

10.   Regenhardt RW, Das AS, Lo EH, et al. Advances in Understanding the Pathophysiology of Lacunar Stroke: A Review. JAMA Neurol. 2018; 75(10): 1273-1281.

11.   Pendlebury ST, Rothwell PM. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: analysis of the population-based Oxford Vascular Study. Lancet Neurol. 2019; 18(3): 248-258.

12.   Akioka N, Takaiwa A, Kashiwazaki D, et al. Clinical significance of hemodynamic cerebral ischemia on cognitive function in carotid artery stenosis: a prospective study before and after revascularization. J Nucl Med Mol Imaging. 2017; 61(3): 323-330.

13.   Haupert G, Ammi M, Hersant J, et al. Treatment of carotid restenoses after endarterectomy: A retrospective monocentric study. Ann Vasc Surg. 2020; 64: 43-53.

14.   Featherstone RL, Dobson J, Ederle J, et al. Carotid artery stenting compared with endarterectomy in patients with symptomatic carotid stenosis (International Carotid Stenting Study): a randomised controlled trial with cost-effectiveness analysis. Health Technol Assess. 2016; 20(20): 81-94.

15.   Lamanna A, Maingard J, Barras CD, et al. Carotid artery stenting: Current state of evidence and future directions. Acta Neurol Scand. 2019; 139(4): 318-333.

16.   Kim NY, Choi JW, Whang K, et al. Neurologic complications in patients with carotid artery stenting. J Cerebrovasc Endovasc Neurosurg. 2019; 21(2): 86-93.

17.   Yoo J, Choi JW, Lee SJ, et al. Ischemic Diffusion Lesion Reversal After Endovascular Treatment. Stroke. 2019; 50(6): 1504-1509.

18.   Gramegna LL, Cardozo A, Folleco E, Tomasello A. Flow-diverter reconstruction of an intracranial internal carotid artery dissection during thrombectomy for acute ischaemic stroke. BMJ Case Rep. 2020; 13(1).

19.   Snyder T, Agarwal S, Huang J, et al. Stroke Treatment Delay Limits Outcome After Mechanical Thrombectomy: Stratification by Arrival Time and ASPECTS. J Neuroimaging. 2020; 30(5): 625-630.

20.   Chu YT, Lee KP, Chen CH, et al. Contrast-Induced Encephalopathy After Endovascular Thrombectomy for Acute Ischemic Stroke. Stroke. 2020; 51(12): 3756-3759.

21.   Maksimovich IV. Laser Technologies as a New Direction in Transcatheter Interventions. Photobiomodul Photomed and Laser Surg. 2019; 37(8): 455-456.

22.   Maksimovich IV. Transluminal laser angioplasty in treatment of ischemic lesions of a brain. Ph.D. Dissertation, Russian University of Friendship of the People 2004; Moscow [In Russ].

23.   Hamblin MR. Photobiomodulation, Photomedicine, and Laser Surgery: A New Leap Forward Into the Light for the 21st Century. Photobiomodul Photomed Laser Surg. 2018; 36(8): 395-396.

24.   Salehpour F, Gholipour-Khalili S, Farajdokht F, et al. Therapeutic potential of intranasal photobiomodulation therapy for neurological and neuropsychiatric disorders: a narrative review. Reviews in the Neurosciences. 2020; 31(3): 269-286.

25.   Saltmarche AE, Margaret A, Naeser MA, et al. Significant Improvement in Cognition in Mild to Moderately Severe Dementia Cases Treated with Transcranial Plus Intranasal Photobiomodulation: Case Series Report. Photomedicine and Laser Surgery. 2017; 35(8): 432-441.

26.   Hamblin MR. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem Photobiol. 2018; 94(2):199-212.

27.   Huang YY, Hamblin MR. Photobiomodulation on cultured cortical neurons. Photobiomodulation in the Brain. 2019: 35-46.

28.   Hamblin MR. Mechanisms of photobiomodulation in the brain Photobiomodulation in the Brain. 2019: 97-110.

29.   Lapchak PA. The challenge of effectively translating transcranial near-infrared laser therapy to treat acute ischemic stroke. Photobiomodulation in the Brain. 2019: 289-298.

30.   Taboada LD, Hamblin MR. Transcranial photobiomodulation for stroke in animal models. Photobiomodulation in the Brain. 2019: 111-124.

31.   Maksimovich IV. Intracerebral Transcatheter Laser PBMT in the Treatment of Binswanger's Disease and Vascular Parkinsonism: Research and Clinical Experience. Photobiomodul Photomed and Laser Surg. 2019; 37(10): 606-614.

32.   Mahoney FI, Barthel DM. Functional evaluation: The barthel index. Maryland State Medical Journal. 1965; 14: 61-65.

33.   Morris JC. The Clinical Dementia Rating (CDR): Current Version and Scoring Rules. Neurology. 1993; 11(43): 2412-2414.

34.   Folstein MF, Folstein SE, McHugh PR. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12(3): 189-198.

authors: 

 

Abstract

The research is devoted to the clinical study of disorders in cerebral blood flow and microcirculatior in the development of Alzhelmer's disease in comparison with other neurodegenerative and ischemic diseases.

Materials and methods: 1117 patients with various types and stages of neurodegenerative ancischemic diseases were examined. 93 (8.33%) of them had various stages of Alzhelmer's disease - Test Group. Other 1024 (91.67%) had different types and stages of other cerebral neurodegenerative and ischemic lesions - Control Group. Control Group patients were divided: 23 (2.25%) suffered from Binswanger disease; 55 (5.37%) suffered from vascular Parkinsonism; 27 (2.64%) had initial signs of chronic cerebrovascular insufficiency of atherosclerotic origin; 577 (56.35%) had marked signs of chronic cerebrovascular insufficiency of atherosclerotic origin; 342 (33.40%) had a severe form of chronic cerebrovascular insufficiency accompanied by small-focal single or multiple strokes. Examination included: laboratory diagnostics, assessment of scales «The Clinical Dementia Rating scale» (CDR), «Mini-Mental State Examination» (MMSE), IB, cerebral scintiography (SG), rheoencephalography (REG), cerebral CT, MRI, MR angiography, digital angiography (DA).

Results: all patients with Alzheimer's disease, regardless of the stage of the disease, had a specific cerebral small vessel disease (CSVD) in temporal and frontoparietal regions, which manifests itself with dyscirculatory angiopathy of Alzheimer's type (DAAT), which is not found in control group patients.

Conclusions: DAAT is a specific to Alzheimer's disease lesion of cerebral angioarchitectonics and microvessels, which changes hemodynamics, causes cerebral hypoxia and contributes to disorders in beta-amyloid metabolism. The combination of deposition of amyloid beta in the cerebral tissue and the vascular wall, as well as specific microcirculation disorders, cause together neurodegeneration and the development of Alzheimer's disease. In patients with other neurodegenerative and ischemic diseases, CSVDs are of a different nature, with no DAAT phenomena observed.

  

References

1.     2019 Alzheimer's disease facts and figures. J Alzheimer’s & Dementia 2019; 13(4): 325-373.

2.     Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010; 9 (7): 689-701.

3.     Cai Z., Wang C., He W. et al. Cerebral small vessel disease and Alzheimer's disease. Clin Interv Aging. 2015; 23 (10):1695-1704.

4.     Grammas P,  Martinez  J., Sanchez, A. et al. A new paradigm for the treatment of Alzheimer's disease: targeting vascular activation. J Alzheimers Dis. 2014; 40(3):619-630.

5.     Gjulev, N.M., Pustozertsev, V.G., Gjulev, S.N. Cerebrovascular Diseases. The Neva Dialect 2002.[In Russ.] 

6.     Mormino E.C., Papp K.V., Rentz D.M., et al. Early and late change on the preclinical Alzheimer's cognitive composite in clinically normal older individuals with elevated amyloid-p. J Alzheimer's & Dementia. 2017;13 (9): 10041012.

7.     Jack C.R., Petersen R.C, Xu YC., et al. Prediction of AD with MRI-based Hippocampal Volume in Mild Cognitive Impairment. Neurology. 1999; 52 (7): 1397-1403.

8.     Waldemar G., Dubois B., Emre M., et al. Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. European Journal of Neurology. 2007; 14, (1): e1-26.

9.     Burton E.J., Barber R., Mukaetova-Ladinska E.B., et al. Medial temporal lobe atrophy on MRI differentiates Alzheimer's disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain. 2009; 132 (Pt1): 195-203.

10.   Trojanowski J.Q., Vandeerstichele H., Korecka M., et al. Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. J Alzheimer’s & Dementia. 2010; 6 (3): 230-238.

11.   Adriaase A., Sanz-Arigita E., Binnewijzend M., et al. Molecular markers of Alzheimer's Disease pathology and their relationship with default mode network integrity. J Alzheimer's & Dementia. 2011; 7 (4) S2-S3.

12.   Meyer PT., Hellwig S., Amtage F., et al. Dualbiomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B J Nucl Med. 2011; 52 (3): 393-400.

13.   Weiner W.W., Veitch D.P, Aisen PS., et al. 2014 Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception. Journal of Alzheimer’s & Dementi. 2015; 11(6) e1-e120.

14.   Chiang G.C., Insel Ph.S., Tosun D., et al. Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes. Radiology. 2011; 259 (3): 844-851.

15.   De la Torre J.C. Hemodynamic consequences of deformed microvessels in the brain in Alzheimer’s disease. Annals of New York Acadmy Sciences. 1997; 26: 75-91. 

16.   Kalaria R. Small vessel disease and Alzheimer’s dementia: Pathological considerations. Cerebrovascular Diseases. 2002:13: 48-52.

17.   Maksimovich I.V. Dyscirculatory Angiopathy of Alzheimer’s Type. Journal of Behavioral and Brain Science. 2011 1 (2): 57-68.

18.   Zlokovic B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nature Reviews. Neuroscience. 2011; 3: 723-738.

19.   Maksimovich I.V. Vascular factors in Alzheimer’s disease. Health. 2012; 4 (9A): 735-742.

20.   Baloiannis S.J., Baloiannis I.S. The vascular factor in Alzheimer’s disease: A study in Golgi technique and electron microscopy. Journal of the Neurological Sciences. 2012; 322: 117-121.

21.   Baloyannis S.J. (2015) Brain capillaries in Alzheimer's disease. Hell J Nucl Med.2015; 1 (Suppl 1): 152.

22.   Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci. 2004; 5, (5): 347-360.

23.   Maksimovich I.V., Gotman L.N. Method of complex radiation diagnostics at preclinical and clinical stages of Alzheimer’s disease. Patent RF №. 2315559. 2006. [In Russ.]

24.   Maksimovich I.V., Gotmanm L.N., Masyuk S.M. Method of Determining Dimensions of Temporal Brain Lobes in Patients Suffering from Alzheimer’s Disease. Patent RF № 2306102. 2006. [In Russ.]

25.   Bell R.D., Zlokovic B.V. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease. Acta Neuropathologica. 2009; 118: 103-113.

26.   Koike M.A., Green K.N., Blurton-Jones M. Oligemic hypoperfusion differentially affects tau and amyloid-{beta}. Am J Pathol. 2010; 177: 300-310.

27.   Nelson A.R., Sweeney M.D., Sagare A.P, Zlokovic A. V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer's disease. Biochim Biophys Acta. 2016; 1862, (5): 887-900.

28.   Kimbrough I.F., Robel S., Roberson E.D., Son- theimer H. (2015) Vascular amyloidosis impairs the glio- vascular unit in a mouse model of Alzheimer's disease. Brain, 2015; 138, (Pt 12): 3716-3733.

29.   Maksimovich I.V. Radiodiagnostics of Alzheimer’s disease. Diagnostics and Intervention Radiology. 2008; 4: 27-38. [In Russ.]

30.   Morris J.C. The Clinical Dementia Rating (CDR): Current Version and Scoring Rules. Neurology. 1993; 11 (43): 2412-2414.

31.   Folstein M.F., Folstein S.E., McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975; 12 (3): 189-198.

32.   Maksimovich I.V. The tomography dementia rating scale (TDR) - The rating scale of Alzheimer’s disease stages. Health. 2012; 4 (9A): 712-719.

33.   De Lin M., Jackson E.F. Applications of Imaging Technology in Radiation Research. Radiat Res. 2012; 177 (4): 387-397. 

34.   Brown W.R., Thore C.R. Review: cerebral microvas- cular pathology in ageing and neurodegeneration. Neu- ropatholApplNeurobiol. 2011; 37 (1): 56-74.

35.   Henry-Feugeas M.C. Alzheimer’s disease in late- life dementia: a minor toxic consequence of devastating cerebrovascular dysfunction. Med Hypotheses. 2008; 70 (3): 866-875.

36.   Maksimovich I.V. Certain new aspects of etiology and pathogenesis of Alzheimer’s disease. Advances in Alzheimer’s Disease. 2012; 1 (3): 68-76.

37.   Maksimovich I.V. Disorders of cerebrovascular angioarchitectonics and microcirculation in the etiology and pathogenesis of Alzheimer’s disease Advances in Alzheimer’s Disease. 2013; 2, (4): 171-181.

38.   Zlokovic B.V. Neurodegeneration and the neurovascular unit. Nat Med. 2010; 16 (12): 1370-1371.

39.   Iadecola C. The overlap between neurodegenera- tive and vascular factors in the pathogenesis of dementia. Acta Neuropathol.2010 120 (3): 287-396.

40.   De la Torre J.C. A turning point for Alzheimer's disease? Bio Factors. 2012; 38 (2): 78-83.

41.   De la Torre J.C. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia. Brain Pathology. 2016; 26 (5): 618-631.

42.   Love S., Miners J.S. Cerebral Hypoperfusion and the Energy Deficit in Alzheimer's Disease Brain Pathology. 2016; 26 (5): 607-617.

43.   Nielsen R.B., Egefjord L., Angleys H., et al. Capillary dysfunction is associated with symptom severity and neurodegeneration in Alzheimer's disease. J Alzheimer's & Dementia. 2017; 13 (10): 1143-1153. 4 4 . Bosco P., Redolfi A., Bocchetta M., et al. The impact of automated hippocampal volumetry on diagnostic confidence in patients with suspected Alzheimer's disease: An EADC study. J Alzheimer's & Dementia. 2017; 13 (9): 10131023.

45.   Iadecola C. Dangerous leaks: blood-brain barrier woes in the aging hippocampus. Neuron. 2015; 85 (2): 231-233.

46.   Montagne A., Barnes S.R., Sweeney M.D. et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015; 85 (2): 296-302.

47.   Maksimovich I.V. Morphometric Definition of Alzheimer's Disease Stages by Means of The Tomography Dementia Rating Scale (TDR). Brain Disord Ther. 2017; 6, (2): 1-4.

48.   Schmidtke K., Hull M. Cerebral small vessel disease: how does it progress? J Neurol Sci. 2005; 229-230: 13-20.

49.   Qureshi A.I., Caplan L.R. Intracranial atherosclerosis. Lancet. 2014; 15, 383 (9921), 984-998.

50.   Caplan L.R. The Effect of Small Artery Disease on the Occurrence and Management of Large Artery Disease. JAMA Neurol. 2016; 73 (1): 19-20.

51.   Ramos-Estebanez C., Moral-ArceI., Gonzalez- Mandly A. et al. Vascular cognitive impairment in small vessel disease: Clinical and neuropsychological features of lacunar state and Binswanger's disease. Age Ageing. 2011; 40 (2): 175-180. 

52.   AkiguchiI., Budka H., Shirakashi Y, et al. MRI features of Binswanger's disease predict prognosis and associated pathology. Ann Clin Transl Neurol. 2014; 1 (10): 813-821. 

53.   Maksimovich I.V. Possibilities of Application of Transcatheter Treatment of Vascular Dementia with Bin- swanger’s Disease. Global Journal of Health Science. 2017; 9 (6): 13-21.

authors: 

 

Abstract:

Integrated approach to radiologic diagnostics of the Alzheimer's disease used in 87 patients, 42 of which were at risk or at different stages of the disease, and 45 patients had various cerebral pathology not connected to the Alzheimer's disease. Computed tomography (CT) with temporal lobe volume calculation followed by scintigraphy, rheoencephalography and digital subtractional angiography (DSA) were done in all the patients.

Temporal and hippocampal atrophy (1), fronto-parietal and temporal capillary vascular bed reduction (2) with multiple arteriovenous shunts (3), as well as venous congestion with anomalous fronto-parietal veins formation (4) were the characteristic radiological features of the Alzheimer's disease. It is important that the above were seen not only in patients with late, but also in early and preclinical stages. These phenomena were also shown to be specific for the Alzheimer disease.

 

Reference

1.     Винблад Б. Болезнь Альцгеймера: эпидемиология, экономические затраты и терапевтические стратегии. Болезнь Альцгеймера и старение: от нейробиологии к терапии. Материалы 2-й российской конференции 18-20 октября 1999 г. М.: Пульс. 1999; 24.

2.     Altzheimer's Disease Facts and Figures, 2007.A Statistical abstract of U. S. data on Altzeimer's disease published by the Altzheimer'sAssociation. М.: Washington. 2008; 1-30.

3.     Гаврилова С.И., Калын Я.Б., Брацун А.Л. Эпидемиологические аспекты болезниАльцгеймера и других деменций позднеговозраста. XII съезд психиатров России. М. 1995;424-425.

4.     Гаврилова С.И. Фармакотерапия болезниАльцгеймера. М.: Пульс. 2003; 337.

5.     Вавилов С.Б. Компьютерная томографияголовного мозга в психиатрии: методы морфометрии. Компьютерная томография и другие современные методы диагностики(возможности и перспективы). Материалымеждународного симпозиума. М. 1989; 60-67.

6.     Колыхалов И.В. Клинические и компьютерно-томографические сопоставления при деменциях альцгеймеровского типа. Автореф. дис. канд. мед. наук. М. 1993; 25.

7.     Ахадов Т.А., Тютин Л.А., Панов В.О. и др. Объемные поражения головного мозга. Клиническое применение магнитно-резонансной томографии с контрастным усилением. Опыт использования парамагнитного средства «Магневист». М.: Видар. 1996; 21-28.

8.     Дамулин И.В., Левин О.С., Яхно Н.Н. Болезнь Альцгеймера: клинико-МРТ-исследование. Неврологический журнал. 1999; 2: 34-38.

9.     Ойфа А.И. Патологический анализ компьютерно-томографических изменений мозга в геронтопсихиатрии. Независимый психологический журнал. 2003; 2: 68-73.

10.   Bradley W.G., Waluch V., Yadley R.A. et al. Comparison of CT and MR in 400 patients with suspected disease of the brain and cervical spinal cord. Radiology. 1984; 152: 695-702.

11.   Bowen B.C. et al. MR signal abnormalities in memory disorder and dementia. Am. J. Roentgenol. 1990; 6: 1285-1292.

12.   Tsuchiya K., Makita K., Furui S., Nitta K. MRIappearances of calcified lesions within intracranial tumors. Neuroradiology. 1993; 35:341-344.

13.   Tzika A.A., Robertson R.L., Barnes P.D. et al.Childhood moyamoya disease: hemodynamicMRI. Pediatr. Radiology. 1997; 27: 727-735.

14.   Rusinek H., de Leon M.J., George A.E. et al.Alzheimer disease: measuring loss of cerebralgray matter with MR imaging. Radiology. 1991;178: 109-114.

15.   Kesslak J.P., Nalcioglu O., Cotman C.W.Quantification of magnetic resonance scansfor hippocampal and parahippocampalatrophy in Alzheimer's disease. Neurology.1991; 41: 51-54.

16.   Jack C.R., Petersen R.C., Xu Y.C. et al. Medialtemporal atrophy on MRI in normal agingand very mild Alzheimer's disease. Neurology.1997; 49: 786-794.

17.   Jack C.R., Bentley M.D., Twomey C.K., Zinsmeister A.R. MR imaging-based volume measurements of the hippocampal formation andanterior temporal lobe: validation studies.Radiology. 1990; 176: 205-209.

18.   Jack C.R. Structural imaging approaches toAlzheimer's disease. Early diagnosis of Alzheimer's disease / ed. S. Daffner. Humana. N.J.2000.

19.   Kalaria R.N. Cerebral vessels in ageing andAlzheimer's disease. Pharmacol. Ther. 1996;3 (72): 193-214.

20.   Kalaria R.N. Small vessel disease and Alzheimer's dementia: pathological considerations.Cerebrovascular. Disies. 2002; 3 (2): 48-52.

21.   Rodriguez G., Vitali P., Calvini P. et al. Hippocampal perfusion in mild Alzheimer's disease.Psychiatry Res. 2000; 100: 65-74.

22.   Гаврилова С.И. Практическое руководствопо диагностике и лечению болезни Альцгеймера. М.: Медицина. 2002; 43.

23.   Жариков Г.А., Рощина И.Ф. Диагностикадеменции альцгеймеровского типа на ранних этапах ее развития. Психиатрия и психофармакотерапия. 2001; 2: 23-27.

24.   Максимович И.В., Овсянников С.А., ГотманЛ.Н. Особенности микроциркуляции головного мозга у лиц с повышенным рискомвозникновения и ранними стадиями болезни Альцгеймера. Ангиология и сосудистаяхирургия. 2004; 4: 20-21.

25.   Максимович И.В., Готман Л.Н., Масюк С.М.Транслюминальная лазерная ангиопластика в лечении микроциркуляторных нарушений при болезни Альцгеймера. Ангиология и сосудистая хирургия. 2004; 10 (3): 89-90.

26.   Максимович И.В., Готман Л.Н. Отдаленныерезультаты применения транслюминальной лазерной ангиопластики в леченииболезни Альцгеймера. Бюл. НЦССХ им.А.Н. Бакулева. 2005; 6 (3): 103.

27.   Максимович И.В., Масюк СМ. Динамические изменения кровоснабжения и микроциркуляции головного мозга у больных,страдающих болезнью Альцгеймера, в отдаленном периоде после проведения транслюминальной лазерной ангиопластики.Сердечно-сосудистые заболевания. Бюл.НЦССХ им. А.Н. Бакулева. 2007; 8: 197.

28.   Максимович И.В., Готман Л.Н. Способ комплексной лучевой диагностики доклинических и клинических стадий болезни Альцгеймера. № 2315559 Патент РФ. 2008.

29.   Максимович И.В., Готман Л.Н. Применение метода транслюминальной лазернойангиопластики в лечении болезни Альцгеймера. Бюл. НЦССХ им. А.Н. Бакулева. 2004;5 (10): 210-211.

30.   Максимович И.В., Готман Л.Н., Масюк С.М.Репоративные изменения головного мозгау больных, страдающих болезнью Альцгеймера, в отдаленном периоде после проведения транслюминальной лазерной ангиопластики. Бюл. НЦССХ им. А.Н. Бакулева.2006; 6 (3): 103.

31.   Максимович И.В., Готман Л.Н., Масюк С.М.Способ определения размера височныхдолей головного мозга при болезни Альцгеймера. № 2306102. Патент РФ. 2007.

32.   Пономарева Н.В., Селезнева Н.Д., Колыхалов И.В. Нейрофизиологические механизмы деятельности мозга при болезни Альцгеймера. Вопросы геронтопсихиатрии. М.:Медицина. 1991; 58-66.

33.   McKhann G., Drachman D., Folstein M. et al.Clinical diagnosis of Alzheimer's disease:report of the NINCDS-ADRDA WorkGroup under the auspices of Department ofHealth and Human Services Task Force onAlzheimer's Disease. Neurology. 1984; 7 (34):939-944.

34.   Mirra S.S., Gearing M., McKeel D.W. et al.Interlaboratory comparison of neuropathology assessments in Alzheimer's disease: a studyof the Consortium to Establish a Registry forAlzheimer's Disease (CERAD).J. Neuropathol.Exp. Neurol. 1994; 3 (53): 303-315.

35.   Corey-BloomJ.,Thal L., Galasko D. et al. Diagnosis and evaluation of dementia. Neurology.1995; 45: 211-218.

36.   Morris J.C. The Clinical Dementia Rating(CDR): current version and scoring rule.Neurology. 1993; 11 (43): 2412-2414.

           37.   Kesslak J.P., Nalcioglu O., Cotman C.W. Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer's disease. Neurology. 1991; 41: 51-54.

authors: 

 

Abstract:

Aim. For determination of Alzheimer's disease (AD) stages, we offer a morphologically determined scale - The Tomography Dementia Rating scale (TDR) based on the severity of atrophic changes in the temporal lobes of the brain revealed during CT and MRI. Materials and methods. The research involved 140 patients aged 28-79. The Test Group included 81 patients aged 34-79 with AD various stages. The Control Group included 59 patients aged 28-78 with various types of brain lesions accompanied by manifestations of dementia and cognitive impairment, but not suffering from AD.

Results. CT and MRI data allowed to compose the TDR scale determining the severity of atrophic changes in the temporal lobes at each AD stage:

•          Pre-clinical AD stage TDR-0: temporal lobes atrophy with 4-8% tissue mass decrease (26-28 MMSE points).

•          Early AD stage - mild dementia TDR-1: temporal lobes atrophy with 9-18% tissue mass decrease (corresponds to CDR-1; 20-25 MMSE points).

•          Middle AD stage - mild dementia TDR-2: temporal lobes atrophy with 19-32% tissue mass decrease (corresponds to CDR-2; 12-19 MMSE points). 

 

References

1.     Alzheimer’s Disease Facts and Figures, 2007. A Statistical Abstract of US Data on Alzheimer’s Disease published by the Alzheimer’s Association http://www.alz.org/national/documents/Report_2007FactsAndFigures.pdf.

2.     Alzheimer’s Disease Facts and Figures 2009 Alzheimer’s Association. http://www.alz.org/national/documents/report_alzfactsfigures2009.pdf.

3.     Alzheimer's Disease Facts and Figures

3.     2010 Alzheimer’s Association. http://www.alz.org/ documents_custom/report_alzfactsfigures2010.pdf.

4.     2011 Alzheimer’s Disease Facts and Figures. http://www.alz.org/downloads/facts_figures_2011.pdf.

5.     Generation Alzheimer’s: The Defining Disease of the Baby Boomers http://act.alz.org/site/Doc-Server/ALZ_BoomersReport.pdf/docID=521.

6.     Jun G., Naj F.C., Beecham G.W., et al. Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch. Neurol. 2010; 67 (12):1473-1484.

7.     Saykin A.J, Wishart H.A. Mild cognitive impairment: conceptual issues and structural and functional brain correlates. Seminars in Clinical. Neuropsychiatry. 2003; 8 (1): 12-30.

8.     Saykin A.J., Wishart H.A., Rabin L.A., et all. Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology. 2006; 12 No. 67 (2): 834-842.

9.     Shen L., Fipri H.A., Saykin AJ.,West J.D. Parametric surface modeling and registration for comparison of manual and automated segmentation of the hippocampus. Hippocampus. 2009; 19 (6): 588-595.

10.   Maksimovich I.V. Vozmoznosti covremennoy kompiuternoy tomografii v diagnostike bolezni Alzheimra.[Possibilities of computed tomography in diagnostics of Alzheimer’s diseases.] Nevrologicheskiy vestnik .2009; 1: 5-10 [In Russ].

29.   Maksimovich I.V. Dyscirculatory Angiopathy of the Brain of Alzheimer's Type. Eurointerventional. 2011; 7: M 253.

30.   Maksimovich I.V. Endovascular Application of Low-Energy Laser in the Treatment of Dyscirculatory Angiopathy of Alzheimer’s Type. Journal of Behavioral and Brain Science. 2012; 2 (1): 67-81.

11.   Mayeux R., Reitz C., Brickman A.M., Haan M.N., Manly J.J. et. all. “Operationalizing diagnostic criteria for Alzheimer's disease and other age-related cognitive impairment. Part 1. Alzheimers & Dementia. 2011; 7 (1): 15-34.

12.   Seashadri S., Beaser A., Au R., Volf P.A., Evans D.A. et.al. Operationalizing diagnostic criteria for Alzheimer's disease and other age-related cognitive impairment. Part 2. Alzheimers & Dementia. 2011; 7 (I): 35-52.

13.   2012 Alzheimer’s Disease Facts and Figures. http://www.alz.org/downloads/facts_figures_2012.pd.

14.   National Plan to Address Alzheimer's Disease http: / /www.whitehouse.gov/ blog/2012/05/17/national-plan-address- alzheimers-disease.

15.   Morris J.C. The clinical dementia rating (CDR): current version and scoring rule. Neurology. 1993; 43 (II):2412-2414.

16.   Maksimovich I.V. Gotman L.N. Sposob kompleksnoy luchevoy diagnostiki doklinicheskih I klinicheskih stadiy bolezni Alzheimera. [Method of complex beam-diagnostics of subclinical and clinicas stages of Alzheimer’s disease.] Russian patent, №. 2315559 [In Russ].

17.   Maksimovich I.V., Gotman L.N., Masiuk S.M. Sposob opredelenia razmera visochnich doley golovnogo mozga pri bolezni Alzheimera [Measuring the size of the temporal lobes in patients with Alzheimer's disease] Russian patent № 2306102 [In Russ].

18.   Maksimovich I.V. Luchevaia diagnostika bolezni Alzheimera. [Beam-diagnostics of Alzheimer’s disease.] Diagnosticheskaia i intervencionnaia radiologia [Diagnostic and interventional radiology. ]. 2008; 2 (4): 27-38 [In Russ].

19.   Maksimovich I.V. Dyscirculatory Angiopathy of Alzheimer's Type. Journal of Behavioral and Brain Science. 2011; 1 (2): 57-68.

20.   Dickerson B.C. Functional magnetic resonance imaging of cholinergic modulation in mild cognitive impairment. Current Opinion in Psychiatry. 2006; 19: 299-306.

21.   Chiang G.C., Insel Ph.S, Tosun D., Schuff N., Truran-Sacrey D., Raptentsetsang S., Jack C.R., Weiner M.W. Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes. Radiolog. 2011; 259 (3): 844-51.

22.   Schuff N., Insel Ph., Chiang G., Truran D, Gamst A., Jack C., Aisen P., Petersen R., Shaw L., Trojanowski J., Weiner M. Acceleration of brain atrophy rates with advancing cognitive deterioration from normal aging to MCI to Alzheimer's disease. J. Alzheimer's &Dementia. 2011; 7 (4): S223.

23.   Trojanowski J.Q., Vandeerstichele H., KoreckaM., et all. Update on the biomarker core of the Alzheimer's Disease Neuroimaging Initiative subjects. Alzheimer's & Dementi. 2010; 6 (3): 230-238.

24.   Meyer P.T., Hellwig S., Amtage F., et al. Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B. J. Nucl. Med. 2011; 52 (3): 393-400.

25.   Perrin R.J., Craig-Schapiro R., Morris J.C., et al. Identification and validation of novelcerebrospinal fluid biomarkers for staging early Alzheimer's disease. Public Library of Science On. 2011; 12 (6): e16032.

26.   Jack C., Vemuri P., Viste H., et al. Ordering of Alzheimer's disease biomarkers. Alzheimer's & Dementia. 2011; 7 (4): S4-S5.

27.   Mayeux R., Reitz C., Brickman A.M., Haan M.N., ManlyJ.J. et. al. Operationalizing diagnostic criteria for Alzheimer's disease and other age-related cognitive impairment. Part 1. Alzheimers & Dementia. 2011; 7 (1): 15-34.

28.   Folstein M.F., Folstein S.E., McHugh P.R. Minimental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975; 12 (3): 189-98.

29.   Maksimovich I.V. Dyscirculatory Angiopathy of the Brain of Alzheimer's Type. Eurointerventional. 2011; 7: M 253.

30.   Maksimovich I.V. Endovascular Application of Low-Energy Laser in the Treatment of Dyscirculatory Angiopathy of Alzheimer’s Type. Journal of Behavioral and Brain Science. 2012; 2 (1): 67-81. 

authors: 

 

Abstract:

The author presents the endovascular technique for treatment of the Alzheimer disease. 40 patients aged 34–78 years were included into the study 4 of them were at risk, 13 had early and moderate stage, 16 – full-scaled stage, and 7 had preterminal stage of the disease.

The survey design included computed tomography with temporal lobes volume calculation, brain scintigraphy, rheoencephalography, and digital cerebral angiography.

Temporal lobes atrophy and capillary flow reduction in fronto-parietal and temporal regions are shown to be the characteristic radiomorphological features of the Alzheimer disease. Indications and contrindications for the treatment are presented.

Interventions were pefformed in terms of 1 to 12 years after the disease manifestation. The aim of treatment was percutaneous revascularization and capillary bed restoration by means of transluminal low-energy laser.

Clinical improvement was seen in all the cases; however, it differed in each group of patients. Thus, it is possible not only suspend the advancement of the Alzheimer disease, but to achieve its regression, with regeneration of the brain tissues and to return the people into the active life.  

 

References 

1.        Винблад Б. Болезнь Альцгеймера: эпидемиология, экономические затраты и терапевтические стратегии. Материалы 2-й российской конференции «Болезнь Альцгеймера и старение: от нейробиологии к терапии» 18–20 октября 1999 г. М.: Пульс. 1999; 24.  

2.        Alzheimer’s Disease Facts and Figures 2007. A Statistical Abstract of US Data on Alzheimer’s Disease published by the Alzheimer’s Association. Washington. 2008; 1–30.

3.        Гаврилова С.И., Калын Я.Б., Брацун А.Л. Эпидемиологические аспекты болезни Альцгеймера и других деменций позднего возраста. XII съезд психиатров России. М. 1995; 424–425.

4.        Гаврилова С.И. Практическое руководство по диагностике и лечению болезни Альцгеймера. М.: Медицина. 2002; 43.  

5.        Galasko D. New approaches to diagnose and treat Alzheimer’s disease: a glimpse of the future. Clin. Geriatr. Med. 2001; 17 (2): 393–410.  

6.        Tsuchiya K., Makita K., Furui S., Nitta K. MRI appearances of calcified lesions within intracranial tumors. Neuroradiology. 1993; 35: 341–344.  

7.        Tzika A.A., Robertson R.L., Barnes P.D. et al. Childhood moyamoya disease: hemodynamic MRI. Pediatr. Radiology. 1997; 27: 727–735.  

8.        Rusinek H., de Leon M.J., George A.E. et al. Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology. 1991; 178: 109–114.  

9.        Kesslak J.P., Nalcioglu O., Cotman C.W. Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology. 1991; 41: 51–54.  

10.      Жариков Г.А., Рощина И.Ф. Диагностика деменции альцгеймеровского типа на ранних этапах ее развития. Психиатрия и психофармакотерапия. 2001; 2 (2): 3–27.

11.      Гаврилова С.И. Фармакотерапия болезни Альцгеймера. М.: Пульс. 2003; 337.  

12.      Grundman M. Current therapeutic advances in Alzheimer’s disease. In: Research and practice in Alzheimer’s disease. Paris. 2001; 5: 172–177.  

13.      Jacobsen J.S., Reinhart P., Pangalos M.N. Current Concepts in Therapeutic Strategies Targeting Cognitive Decline and Disease Modification in Alzheimer’s Disease. Neuro Rx. 2005; 2: 612–626.

14.      Wilkinson D. Drugs for treatment of Alzheimer’s disease. Int. J. Clin. 2001; 55 (2): 129–134.  

15.      Masse I., Bordet R., Deplanque D. et al. Lipid lowering agents are associated with a slower cognitive decline in Alzheimer’s disease. J. of Neurol., Neurosurg. and Psych. 2005; 76: 1624–1629.  

 

authors: 

Abstract:

Aim. Was to investigate the efficiency of transluminal laser revascularization of brain in treatment of vascular dementia.

Materials and methods. We have examined and treated 665 patients aged 29 to 81 (average age 75) suffering from various kinds of atherosclerotic lesions of cerebral vessels accompanied by developed vascular dementia. The research included: CT, MRI, scintigraphy, rheoencephalography, poliprojectional angiography To perform endovascular treatment we selected 639 patients: Group 1 (CDR-1) - 352, Group 2 (CDR-2) - 184, Group 3 (CDR-3) - 103 patients. To conduct revascularization of main intracranial arteries high-energy laser systems were used; for revascularization of distal intracranial branches low-energy laser systems were used.

Results. The clinical outcome depended on the severity of dementia and timing of the intervention. A good clinical outcome in Group 1 was obtained in 281 (79.82%) cases, in Group 2 in 81 (44.02%) cases, in Group 3 in 9 (8.73%) cases. A satisfactory clinical outcome in Group 1 was obtained in 53 (15.34%) cases, in Group 2 in 62 (33.70%) cases, in Group 3 in 31 (30.09%) cases. A relatively satisfactory clinical outcome in Group 1 was obtained in 17 (4.83%) cases, in Group 2 in 41 (22.28%) cases, in Group 3 in 63 (61.16%) cases. No negative effects were observed after the interventions.

Conclusions. Evaluating the data obtained it can be concluded that the method of transluminal laser revascularization of cerebral blood vessels is an effective one for the treatment of atherosclerotic lesions of the brain accompanied by dementia.  

 

Reference 

1.    Gillum R.F, Kwagyan J, Obisesan Th.O. Ethnic and Geographic Variation in Stroke Mortality Trends. Stroke:. 2011; 42:3294-3296.

2.    Frolich A.MJ, Psychogios M.N, Klotz E, Knauth M, Knauth P. Angiographic Reconstructions From Whole-Brain Perfusion CT for the Detection of Large Vessel Occlusion in Acute Stroke. Stroke. 2012; 43:97-102.

3.    Жулев Н.М, Пустозерцев В.Г, Жулев С.Н. Цереброваскулярные заболевания. 2002, М. Москва, BINOM.

Zhulev N.M., Pustozertsev, V.G., Zhulev, S.N..(2002) Cerebrovascular Diseases. BINOM, Moscow [In Russ].

4.    Roman G.C. Facts, myths, and controversies in vascular dementia. J. Neurol. Sci. 2004; 226: 49-52.

5.    Folstein M.F, Folstein S.E, McHugh P.R. «Mini-mental state.» A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975;12(3):189-98.

6.    Skoog I. Psychiatric disorders in the elderly. Can. J. Psychiatry. 2011; 56 (7):387-97.

7.    Maksimovich I.V. Long-term Results of Brain Transluminal Laser Revascularization In The Treatment of Ischemic Stroke. J. Am Coll. Cardiol. 2010; 56; B49-0.

8.    Максимович И.В. Транслюминальная лазерная ангиопластика в лечении ишемических поражений головного мозга. дис. д-ра мед. наук М, 2004. Maksimovich, I.V. Transljuminal laser angioplasty in treatment of ischemic lesions of a brain. M. D. 2004, dissertation, Moscow [In Russ].

9.    Maksimovich I.V. Transluminal Laser Revascularization of Cerebral Blood Vessels in the Treatment of Ischemic Stroke. J. Am. Coll. Cardiol. 2010;56; B48-9.

10.  Mahoney F.I, Barthel D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965; 14: 61-65.

11.  El Ali A, Doeppner T.R, Hermann D.M. Increased Blood-Brain Barrier Permeability and Brain Edema After Focal Cerebral Ischemia Induced by Hyperlipidemia: Role of Lipid Peroxidation and Calpain-1/2, Matrix Metalloproteinase-2/9, and RhoA Overactivation. Stroke. 2011;42:3238-3244.

12.  Roman G.C, Kalaria R.N. Vascular determinants of cholinergic deficits in Alzheimer disease and vascular dementia. Neurobiol Aging. 2006; 27(12): 1769-85.

13.  Roman G.C. Facts, myths, and controversies in vascular dementia. J. Neurol. Sci. 2004; 226: 49-52.

14.  Skoog I. Psychiatric disorders in the elderly. Can. J. Psychiatry. 2011; 56 (7):387-97.

15.  Silver F.L, Mackey A, Clark W.M, Brooks W, Timaran C.H, Chiu D, Goldstein L.B, Meschia J.F, Ferguson R.D, Moore W.S, Howard G, Brott T.G. Safety of stenting and endarterectomy by symptomatic status in the Carotid Revascularization Endarterectomy Versus Stenting Trial (CREST). Stroke. 2011; 42 (3): 675-80.

16.  Papanagiotou P, Roth C, Walter S, Behnke S, Grunwald I.Q, Viera J, Politi M, K^ner H, Kostopoulos P, Haass A, Fassbender K, Reith W. Carotid artery stenting in acute stroke. J. Am. Coll. Cardiol. 2011; 58 (23):2363-9.

17.  Biamino G., The excimer laser: science fiction fantasy or practical tool? J Endovasc Ther. 2004; 11; Suppl. 2 :II207-22.

18.  Benedek I., Hintea T. Current developments in interventional treatment of total terminal aortic occlusions-laser, stenting and balloon angioplasty: experience of cardiology clinic of Targu-Mures. Rom J. Intern. Med. 2005; 43 (3-4): 223-32.

19.  Ecanow J.S., Schwartz B.T., Park R. Tibial recanalization with excimer laser angioplasty. Semin InterventRadiol. 2007; 24(1):58-62.

20.  Amb

authors: 

 

 

Abstract:

The research investigates the possibility of restoring the blood supply in patients with atherosclerosis of the brain, as well as the treatment of chronic cerebrovascular insufficiency, both not burdened and the burdened development of small strokes, with use for this method of transcatheter laser revascularization.

The research involves 946 patients aged 29-81 (average age 74) suffering from various types of cerebral atherosclerosis. 568(60,04%) patients underwent transcatheter treatment - Test Group. 378 (39,96%) patients underwent conservative treatment - Control Group. The examination plan included laboratory diagnostics, assessment CDR, MMSE, IB, cerebral SG, REG, CT, MRI, MRA, MUGA. To restore the blood supply, the method of transcatheter laser revascularization was applied; high-energy pulsed lasers were used for major intracranial arteries treatment, and low-energy CW lasers - for distal intracranial branches treatment.

Test Group: 459(80,81%) patients had good clinical outcome, 91(16,02%) - satisfactory clinical outcome, 18(3,17%) - relatively satisfactory clinical outcome; relatively positive clinical outcome was not obtained in any case. Control Group: good clinical outcome was not obtained in any case; 65(17,20%) patients had satisfactory clinical outcome, 121(23,26%) - relatively satisfactory clinical outcome; 192(50,79%) - relatively positive clinical outcome.

The method of transcatheter laser revascularization of cerebral vessels is a physiological, effective and low-invasive treatment for patients suffering from atherosclerosis of the brain. Obtained results last up to 10 years and more; it causes regression of mental and motor disorders, promotes regression of dementia and largely improves patients' quality of life; it has virtually no alternative - which makes the proposed method significantly different from conservative treatment methods. 

 

References

1.     Gillum R.F., Kwagyan J., Obisesan Th.O. Ethnic and Geographic Variation in Stroke Mortality Trends. Stroke. 2011; 42(2): 3294-3296.

2.     Maksimovich I.V. Transcatheter Treatment of Atherosclerotic Lesions of the Brain Complicated by Vascular Dementia Development. World Journal of Neuroscience. 2012; 2(4): 200-209.

3.     Frolich A.M., Psychogios N.M., Klotz E., et al. Angiographic Reconstructions From Whole-Brain Perfusion CT for the Detection of Large Vessel Occlusion in Acute Stroke. Stroke. 2012; 43: 97-102.

4.     Abou-Chebl A. Management of acute ischemic stroke. Curr Cardiol Rep. 2013; 15(4): 348-354.

5.     Gjulev N.M., PustozertsevV.G., Gjulev S.N. Cerebrovaskuljarnye zabolevanija [Cerebrovascular Diseases]. M.: BINOM, 2002 [ In Russ].

6.     Qureshi A.I., Caplan L.R. Intracranial atherosclerosis. Lancet. 2014; 15, 383 (9921): 984-998.

7.     Caplan L.R., Thomas A.J., Inoa V. Interventional treatment of brain ischemia related to intracranial cerebrovascular occlusive lesions. Curr Opin Neurol. 2014; 27(1):1-7.

8.     Pendlebury S.T., Wadling S., Silver L.E., et al. Transient Cognitive Impairment in TIA and Minor Stroke. Stroke. 2011; 42: 3116-3121.

9.     Maksimovich I.V. Possibilities of transcatheter treatment of patients after extensive ischemic stroke. World Journal of Neuroscience. 2013; 3: 171-185.

10.   Hashmi J.T., Huang YY, Osmani B.Z., et al. Role of Low-Level Laser Therapy in Neurorehabilitation, PM& R. 2010; 2, 12 Suppl 2: S292-S305.

11.   Naeser M.A., Hamblin M.R. Potential for transcraniallaser or LED therapy to treatstroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg. 2011; 29(7): 443-446.

12.   Song S., Zhou F., Chen W.R. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases. J Neuroinflammation. 2012; 18(9): 219.

13.   Stephan W., Banas L.J., Bennett M., et al. Efficacy of super-pulsed 905 nm Low Level Laser Therapy (LLLT) in the management of Traumatic Brain Injury (TBI): A case study, World Journal of Neuroscience. 2012; 2(4): 231-233.

14.   Konstantinovi L.M., Jeli M.B., Jeremi A., et al. Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med. 2013; 45(10):648-653.

15.   Klopfenstein J.D., Ponce F.A., Kim L.J., et al. Middle cerebral arterystenosis: endovascular and surgical options. Skull Base. 2005; 15(3):, 175-189.

16.   Takaiwa A., Kuwayama N., Akioka N., et al. Effect of carotid endarterectomy on cognitive function in patients with asymptomatic carotid artery stenosis. Acta Neurochirurgica. 2013; 155: 627-633.

17.   Altinbas A., Algra A., Martin M., et al. Effects of carotid endarterectomy or stenting on hemodynamic complications in the International Carotid Stenting Study: a randomized comparison. International Journal of Stroke, 2014; 9(3): 284-290.

18.   Muroi C., Khan N., Bellut D., et al. Extracranial-intracranial bypass in atherosclerotic cerebrovascular disease: Report of a single centre experience. British Journal of Neurosurgery. 2011; 25: 357-362.

19.   Papanagiotou P., Roth C., Walter S., et al. Carotid artery stenting in acute stroke. Journal of the AmericanCollege of Cardiology. 2011; 58: 2363-2369. 

20.   Matsumaru Y, Tsuruta W., Takigawa T., et al. Percutaneous Transluminal Angioplasty for Atherosclerotic Stenoses of Intracranial Vessels. IntervNeuroradiol. 2004; 10Suppl 2, 17-20.

21.   Derdeyn C.P., and Chimowitz M.I. Angioplasty and Stenting for Atherosclerotic Intracranial Stenosis: Rationale for a Randomized Clinical Trial. Neuroimaging Clin N Am. 2007; 17(3): 355-ix.

22.   Dorn F. Prothmann S., Wunderlich S., et al. Stent angioplasty of intracranial stenosis: single center experience of 54 cases. Clin Neuroradiol. 2012; 22(2):149-156.

23.   Maksimovich I.V. Vozmozhnosti ispol'zovanija transsljuminal'noj lazernoj revaskuljarizacii sosudov golovnogo mozga v lechenii vaskuljarnoj demencii. [Possibilities of Using Transluminal Laser Revascularization of Cerebral Vessels in the Treatment of Vascular Dementia]. Diagnostic & interventional radiology. 2013; 7(2): 65-67 [In Russ].

24.   Maksimovich I.V. Intracerebral Transcatheter Technologies in the Treatment of Ischemic Stroke. J Am Coll Cardiol. 2015; 66:15S.

25.   Morris J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology. 1993; 43: 2412- 2414.

26.   Folstein M.F., Folstein S.E. and McHugh P.R. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 1975; 12: 189-198.

27.   Mahoney F.I. and Barthel D.M. Functional evaluation: The barthel index. Maryland State Medical Journal. 1965; 14: 61-65.

28.   Maksimovich I.V. Sposob transljuminal'noj lazernoj revaskuljarizacii golvnogo mozga pri ateroskleroticheskih porazhenijah. [Method for carrying out transluminal laser-induced brain revascularization in atherosclerotic injury cases]. 2006; RF Patent No. 2297861 [In Russ].

29.   Maksimovich I.V. Method of transluminal laser revascularization of cerebral blood vessels having atherosclerotic lesions. 2006; US Patent No. 7490612.

30.   Maksimovich I.V. Transcatheter Treatment of Patients after Extensive Ischemic Stroke. Journal of the Americal College of Cardiology. 2013; 62(18): S1: B155-B156. 

31.   Deviatkov  N.D., Rabkin I.Kh. Maksimovich, I.V. et al. Primenenie izluchenich lazera na parah medi dlja isparenija ateroskleroticheskih porazhenij magistral'nyh arterij in vitro. [Use of copper-vapor laser radiation for the evaporation of atherosclerotic lesions of the major arteries in vitro]. Surgery. 1986; 4: 116-121[In Russ].

32.   Petrovskiy B.V., Deviatkov N.D., Rabkin I.Kh., Maksimovich I.V. et al. Razrushenie ateroskleroticheskih porazhenij kadavernyh arterij cheloveka izlucheniem lazera na parah medi. [Destruction of arteriosclerotic lesions of human cadaveric arteries by laser irradiation with copper vapors]. Surgery, 1986; 5, 112-116 [In Russ].

33.   Kuleshov E.V., Maksimovich I.V. Jendovaskuljarnaja hirkrgija u pacientov starshe 65 let s rasprostranennym aterosklerozom sosdov taza i nizhnih konechnostej. [Endovascular surgery in patients over 65 with disseminated atherosclerosis of the vessels of the pelvis and lower extremities]. Vestnik Surgery Imeni 1.1. Grekova, 1994; 152: 27-30 [In Russ].

34.   Maksimovich I.V. Transljuminal'naja lazernaja angioplastika v lechenii ishemicheskih porazhenij golovnogo mozga. [Transljuminal laser angioplasty in treatment of ischemic lesions of a brain]. M.D. Dissertation, Russian University of Friendship of the People, 2004; Moscow [In Russ].

35.   Chizhov, G.K., Kovalskaia, N.I. and Kozlov V.I. Jeffekt jenergii izluchenija gelij-neonovogo lazera na metabolicheskie indeksy miokarda. [The effect of helium-neon laser radiation on the energy metabolic indices of the myocardium]. Bulletin of Experimental Biology and Medicine, 1991; 111: 302-305 [In Russ].

36.   Kozlov V.I., Azizov G.A. Patofiziologicheskie osobennosti mikrocirkuljatornyh narushenij v hronicheskoj arterial'noj ishemii nizhnih konechnostej. [Pathophysiological characteristics of microcirculatory disorders in chronic arterial ischaemia of lower limbs]. Angiology and Vascular Surgery. 2007; 13: 17-23 [In Russ].

37.   Moskvin S.V. Sistemnyj analiz jeffektivnosti upravlenija biologicheskimi sistemami nizkojenergeticheskim lazernym izlucheniem. [System analysis of efficiency in controlling biological systems with low-energy laser radiation]. Thesis for Degree of Doctor of Biological Sciences. 2008; City of Tula [In Russ].

38.   Mak M.C., Cheing G.L. Immediate Effects of Monochromatic Infrared Energy on Microcirculation in Healthy Subjects. Photomedicine and Laser Surgery. 2012; 30(4): 193-199.

39.   Barrett D.W, Gonzalez-Lima F. Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience. 2013; 29(230):13-23.

40.   Yang X., Askarova S., Sheng, W., et al. Low energy laser light (632.8 nm) suppresses amyloid-peptide-induced oxidative and inflammatory responses in astrocytes. Neuroscience, 2010; 171, 3(15): 859-868.

41.   Starck T., Nissil J., Aunio A., et al. Stimulating brain tissue with bright light alters functional connectivity in brain at the resting state. World Journal of Neuroscience. 2012; 2: 81-90.

42.   Heinrich C., Blum R., Gascуn S., et al. Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLOS Biology. 2010; 8, e1000373.

 

 

ANGIOLOGIA.ru (АНГИОЛОГИЯ.ру) - портал о диагностике и лечении заболеваний сосудистой системы